--- file_format: mystnb kernelspec: name: python3 --- (sec-tutorial-experiment)= # Tutorial: Running an Experiment ```{seealso} The complete source code of this tutorial can be found in {nb-download}`Running an Experiment.ipynb` The example dataset can be downloaded {download}`here <../examples/dataset.hdf5>`. ``` This notebook presents a structure for setting up experiments using a combination of `quantify-scheduler` and `quantify-core`. `quantify-scheduler` provides a high-level interface with the hardware, allowing users to abstract hardware-specific nuances. `quantify-core`, on the other hand, serves as an experiment management tool, using `quantify-scheduler` as its hardware interface. This allows users to manage, execute, and analyze experiments easily. The following is a general workflow for using Quantify - **{ref}`initial_setup`** - Set the directory for data storage for the experiment - Initialize the {class}`~quantify_core.measurement.control.MeasurementControl` and {class}`~quantify_scheduler.instrument_coordinator.instrument_coordinator.InstrumentCoordinator` objects - **{ref}`device_setup`** - Set up a *device compilation configuration* for the *device under test* - **{ref}`hardware_setup`** - Connect to the *control hardware* - Set up the *hardware compilation configuration* - **{ref}`create_schedule`** - Create a *schedule* containing the timeline of operations for the experiment - *Compile* the schedule to control-hardware code - *Visualize* the schedule - **{ref}`run_experiment`** - Setup {class}`~quantify_core.measurement.control.MeasurementControl` to run the experiment - *Run* the experiment - *Analyze* the results (initial_setup)= ## 1. Initial Setup We first set up the directory in which all experimental data will be stored and managed. ```{code-cell} ipython3 from quantify_core.data import handling as dh dh.set_datadir() ``` Next, we need to initialize two classes: {class}`~quantify_core.measurement.control.MeasurementControl` for managing the experiment and {class}`~quantify_scheduler.instrument_coordinator.instrument_coordinator.InstrumentCoordinator` for managing the control hardware. ```{code-cell} ipython3 from quantify_core.measurement.control import MeasurementControl from quantify_scheduler.instrument_coordinator import InstrumentCoordinator measurement_control = MeasurementControl("measurement_control") instrument_coordinator = InstrumentCoordinator("instrument_coordinator") ``` (device_setup)= ## 2. Device Setup We set up the quantum device on which we perform the actual experiments. This one-qubit chip is represented by {class}`~quantify_scheduler.device_under_test.quantum_device.QuantumDevice` where we add a single transmon qubit (represented by {class}`~quantify_scheduler.device_under_test.transmon_element.BasicTransmonElement`) `q0` to it. ```{code-cell} ipython3 # Device parameters ACQ_DELAY = 100e-9 FREQ_01 = 4e9 READOUT_AMP = 0.1 READOUT_FREQ = 4.3e9 PI_PULSE_AMP = 0.15 LO_FREQ_QUBIT = 3.9e9 LO_FREQ_READOUT = 4.5e9 ``` ```{code-cell} ipython3 from quantify_scheduler.device_under_test.quantum_device import QuantumDevice from quantify_scheduler.device_under_test.transmon_element import BasicTransmonElement single_qubit_device = QuantumDevice("single_qubit_device") single_qubit_device.instr_instrument_coordinator(instrument_coordinator.name) q0 = BasicTransmonElement("q0") single_qubit_device.add_element(q0) # Assign device parameters to transmon element q0.measure.pulse_amp(READOUT_AMP) q0.clock_freqs.readout(READOUT_FREQ) q0.clock_freqs.f01(FREQ_01) q0.measure.acq_delay(ACQ_DELAY) q0.rxy.amp180(PI_PULSE_AMP) ``` ```{admonition} Quantum Devices and Elements More information on quantum devices and elements can be found in {ref}`sec-tutorial-ops-qubits`. ``` (hardware_setup)= ## 3. Hardware Setup Let us now set up the connections to the control hardware. In this example, we use a dummy Qblox device that is created via an instance of the {class}`~qblox_instruments.Cluster` class, and is initialized with a dummy configuration consisting of a readout module in slot `1` and a control module in slot `2`. ```{code-cell} ipython3 from qblox_instruments import Cluster, ClusterType from quantify_scheduler.instrument_coordinator.components.qblox import ClusterComponent cluster = Cluster( "cluster", dummy_cfg={ 1: ClusterType.CLUSTER_QRM, 2: ClusterType.CLUSTER_QCM_RF, }, ) ic_cluster = ClusterComponent(cluster) instrument_coordinator.add_component(ic_cluster) ``` The last part of setting up the hardware is to define the {class}`~.backends.types.common.HardwareCompilationConfig` and attach it to our `single_qubit_device`. The hardware compilation configuration is a pydantic datastructure, parsed either from a file or from a Python dictionary. It contains all of the information about the instruments used to run the experiment and is used to compile the schedule to hardware. For more information on this datastructure, please refer to the explanation in the {ref}`User Guide `. ```{code-cell} ipython3 hardware_comp_cfg = { "backend": "quantify_scheduler.backends.qblox_backend.hardware_compile", "hardware_description": { f"{cluster.name}": { "instrument_type": "Cluster", "ref": "internal", "modules": { "1": { "instrument_type": "QRM_RF" }, "2": { "instrument_type": "QCM_RF" }, }, }, }, "hardware_options": { "modulation_frequencies": { "q0:res-q0.ro": {"lo_freq": LO_FREQ_READOUT}, "q0:mw-q0.01": {"lo_freq": LO_FREQ_QUBIT}, }, }, "connectivity": { f"{cluster.name}": { f"{cluster.module1.name}": { "complex_output_0": { "portclock_configs": [ { "port": "q0:res", "clock": "q0.ro", } ], }, }, f"{cluster.module2.name}": { "complex_output_0": { "portclock_configs": [ { "port": "q0:mw", "clock": "q0.01", } ], }, }, }, }, } ``` ```{code-cell} ipython3 # Tie hardware config to device single_qubit_device.hardware_config(hardware_comp_cfg) ``` ```{note} The {class}`~.backends.types.common.Connectivity` datastructure is currently under development. Information on the connectivity between port-clock combinations on the quantum device and ports on the control hardware is currently included in the old-style hardware configuration file, which should be included in the `"connectivity"` field of the {class}`~.backends.types.common.HardwareCompilationConfig`. ``` (create_schedule)= ## 4. Schedule Definition and Compilation Now we must create a schedule, where we define the set of operations that we wish to perform on the device under test. We define the schedule independent of the hardware configuration and rely on Quantify's ability to compile a schedule to hardware for converting it to hardware-level commands. For this tutorial, we will define a simple schedule that will run a *T1 experiment* to determine the relaxation time of our qubit. For various delay times `tau`, we repeatedly excite the qubit, wait `tau` seconds and then measure the qubit. ```{code-cell} ipython3 from quantify_scheduler import Schedule from quantify_scheduler.operations.gate_library import Measure, Reset, X def t1_sched(times, repetitions=1): schedule = Schedule("T1", repetitions) for i, tau in enumerate(times): schedule.add(Reset("q0"), label=f"Reset {i}") schedule.add(X("q0"), label=f"pi {i}") schedule.add( Measure("q0", acq_index=i), ref_pt="start", rel_time=tau, label=f"Measurement {i}", ) return schedule ``` ```{admonition} Pre-defined Schedules :class: tip The T1 schedule can be imported with `from quantify_scheduler.schedules import t1_sched`. For more pre-defined schedules, see {mod}`quantify_scheduler.schedules`. ``` We can inspect the details of the schedule in three different ways: via (1) *circuit* and (2) *pulse diagrams*, or through (3) a *timing table* containing the timing and other information of each operation. The {meth}`~quantify_scheduler.schedules.schedule.ScheduleBase.plot_circuit_diagram` method can directly be used to display the quantum circuit that corresponds to the schedule that we defined above. ```{code-cell} ipython3 t1_schedule = t1_sched(times=[1e-6]) t1_schedule.plot_circuit_diagram(); ``` For displaying the pulse diagram and timing table, the schedule first needs to get timing information for each operation in the schedule. This is achieved by compiling the schedule using {class}`~quantify_scheduler.backends.graph_compilation.SerialCompiler`. Please note that below in section {ref}`run_experiment`, the compilation is handled by {class}`~quantify_core.measurement.control.MeasurementControl` internally; it is done here only to enable displaying the timing table and pulse diagram. ```{admonition} Compiling to Hardware More information on compilation can be found in {ref}`sec-tutorial-compiling`. ``` ```{code-cell} ipython3 from quantify_scheduler.backends.graph_compilation import SerialCompiler compiler = SerialCompiler(name="compiler", quantum_device=single_qubit_device) compiled_schedule = compiler.compile(schedule=t1_schedule) ``` Each operation is compiled into pulses that can be viewed and inspected via the {meth}`~quantify_scheduler.schedules.schedule.ScheduleBase.plot_pulse_diagram` method. ```{code-cell} ipython3 compiled_schedule.plot_pulse_diagram(plot_backend="plotly") ``` By passing the `plotly` backend, we made the above diagram interactive. Lastly, the timing table can simply be accessed via the {attr}`~quantify_scheduler.schedules.schedule.ScheduleBase.timing_table` property of a schedule. ```{code-cell} ipython3 compiled_schedule.timing_table ``` ```{admonition} Device-layer Schedules (Pulses) More information on defining schedules using pulses can be found in {ref}`sec-tutorial-sched-pulse`. ``` ```{admonition} Circuit-layer Schedules (Gates and Measurements) More information on defining schedules using circuit-layer operations and mixing with pulses can be found in {ref}`sec-tutorial-ops-qubits`. ``` (run_experiment)= ## 5. Experiment Execution and Analysis We can now configure our {class}`~quantify_core.measurement.control.MeasurementControl` to run the experiment. In this case, we will perform a 1-dimensional sweep using a {class}`qcodes.instrument.parameter.ManualParameter`. Sweeping such a parameter will physically change the hardware output as the sweep is performed. ```{code-cell} ipython3 import numpy as np from qcodes.instrument.parameter import ManualParameter from quantify_scheduler.gettables import ScheduleGettable # Configure the settable time = ManualParameter("sample", label="Sample time", unit="s") time.batched = True times = np.linspace(start=1.6e-7, stop=4.976e-5, num=125) # Configure the gettable gettable = ScheduleGettable( quantum_device=single_qubit_device, schedule_function=t1_sched, schedule_kwargs={"times": times}, batched=True ) # Configure MeasurementControl measurement_control.settables(time) measurement_control.setpoints(times) measurement_control.gettables(gettable) ``` In the above example, we use {meth}`~quantify_core.measurement.control.MeasurementControl.settables` and {meth}`~quantify_core.measurement.control.MeasurementControl.gettables` together with `batched=True` to instruct `measurement_control` how to execute the experiment. Instead of iteratively processing each value in the `times` array, all are processed in one batch. ```{admonition} Configuring MeasurementControl More information on configuring {class}`~quantify_core.measurement.control.MeasurementControl` can be found in the [user guide](https://quantify-quantify-core.readthedocs-hosted.com/en/latest/user/concepts.html#measurement-control) of `quantify-core`. ``` Once {class}`~quantify_core.measurement.control.MeasurementControl` is all set up, we can run the experiment. ```{code-cell} ipython3 --- mystnb: remove_code_outputs: true --- dataset = measurement_control.run() ``` The result of the experiment is assigned to the variable `dataset`, but also saved to disk (as set by {func}`~quantify_core.data.handling.set_datadir` at the start of this tutorial). To analyze the experiment results, we can choose from the variety of classes from the {mod}`quantify_core.analysis` package. For a T1 experiment, we use the {class}`~quantify_core.analysis.single_qubit_timedomain.T1Analysis` class which is used to fit the data, extract relevant parameters and visualize the result. In this tutorial, we run the experiment on a dummy cluster, and therefore the dataset that we obtain is empty. For demonstrational purposes, we show how it would look on an actual dataset. This example dataset can be downloaded {download}`here <../examples/dataset.hdf5>`. ```{code-cell} ipython3 import xarray dataset = xarray.open_dataset("../examples/dataset.hdf5") ``` ```{code-cell} ipython3 from quantify_core.analysis import T1Analysis T1Analysis(dataset=dataset).run().display_figs_mpl() ``` ```{admonition} Analyzing Datasets More information on analyzing datasets can be found in the [user guide]( ) of `quantify-core`. ```